3.3.5 \(\int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx\) [205]

3.3.5.1 Optimal result
3.3.5.2 Mathematica [B] (verified)
3.3.5.3 Rubi [A] (verified)
3.3.5.4 Maple [B] (verified)
3.3.5.5 Fricas [B] (verification not implemented)
3.3.5.6 Sympy [F]
3.3.5.7 Maxima [F(-2)]
3.3.5.8 Giac [F]
3.3.5.9 Mupad [F(-1)]

3.3.5.1 Optimal result

Integrand size = 26, antiderivative size = 169 \[ \int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{a d}-\frac {(e+f x) \cot \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right )}{a d}-\frac {(e+f x) \cot (c+d x)}{a d}+\frac {2 f \log \left (\sin \left (\frac {c}{2}+\frac {\pi }{4}+\frac {d x}{2}\right )\right )}{a d^2}+\frac {f \log (\sin (c+d x))}{a d^2}-\frac {i f \operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right )}{a d^2}+\frac {i f \operatorname {PolyLog}\left (2,e^{i (c+d x)}\right )}{a d^2} \]

output
2*(f*x+e)*arctanh(exp(I*(d*x+c)))/a/d-(f*x+e)*cot(1/2*c+1/4*Pi+1/2*d*x)/a/ 
d-(f*x+e)*cot(d*x+c)/a/d+2*f*ln(sin(1/2*c+1/4*Pi+1/2*d*x))/a/d^2+f*ln(sin( 
d*x+c))/a/d^2-I*f*polylog(2,-exp(I*(d*x+c)))/a/d^2+I*f*polylog(2,exp(I*(d* 
x+c)))/a/d^2
 
3.3.5.2 Mathematica [B] (verified)

Both result and optimal contain complex but leaf count is larger than twice the leaf count of optimal. \(404\) vs. \(2(169)=338\).

Time = 6.96 (sec) , antiderivative size = 404, normalized size of antiderivative = 2.39 \[ \int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (-d (e+f x) \cos \left (\frac {1}{2} (c+d x)\right ) \left (1+\cot \left (\frac {1}{2} (c+d x)\right )\right )+4 d (e+f x) \sin \left (\frac {1}{2} (c+d x)\right )-2 f (c+d x) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+4 f \log \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 d e \log \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 c f \log \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 f (\log (\cos (c+d x))+\log (\tan (c+d x))) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )-2 f \left ((c+d x) \left (\log \left (1-e^{i (c+d x)}\right )-\log \left (1+e^{i (c+d x)}\right )\right )+i \left (\operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right )-\operatorname {PolyLog}\left (2,e^{i (c+d x)}\right )\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+d (e+f x) \sin \left (\frac {1}{2} (c+d x)\right ) \left (1+\tan \left (\frac {1}{2} (c+d x)\right )\right )\right )}{2 a d^2 (1+\sin (c+d x))} \]

input
Integrate[((e + f*x)*Csc[c + d*x]^2)/(a + a*Sin[c + d*x]),x]
 
output
((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(-(d*(e + f*x)*Cos[(c + d*x)/2]*(1 
+ Cot[(c + d*x)/2])) + 4*d*(e + f*x)*Sin[(c + d*x)/2] - 2*f*(c + d*x)*(Cos 
[(c + d*x)/2] + Sin[(c + d*x)/2]) + 4*f*Log[Cos[(c + d*x)/2] + Sin[(c + d* 
x)/2]]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) - 2*d*e*Log[Tan[(c + d*x)/2]] 
*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + 2*c*f*Log[Tan[(c + d*x)/2]]*(Cos[ 
(c + d*x)/2] + Sin[(c + d*x)/2]) + 2*f*(Log[Cos[c + d*x]] + Log[Tan[c + d* 
x]])*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) - 2*f*((c + d*x)*(Log[1 - E^(I* 
(c + d*x))] - Log[1 + E^(I*(c + d*x))]) + I*(PolyLog[2, -E^(I*(c + d*x))] 
- PolyLog[2, E^(I*(c + d*x))]))*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + d* 
(e + f*x)*Sin[(c + d*x)/2]*(1 + Tan[(c + d*x)/2])))/(2*a*d^2*(1 + Sin[c + 
d*x]))
 
3.3.5.3 Rubi [A] (verified)

Time = 1.08 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.01, number of steps used = 18, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.654, Rules used = {5046, 3042, 4672, 3042, 25, 3956, 5046, 3042, 3799, 3042, 4671, 2715, 2838, 4672, 3042, 25, 3956}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(e+f x) \csc ^2(c+d x)}{a \sin (c+d x)+a} \, dx\)

\(\Big \downarrow \) 5046

\(\displaystyle \frac {\int (e+f x) \csc ^2(c+d x)dx}{a}-\int \frac {(e+f x) \csc (c+d x)}{\sin (c+d x) a+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (e+f x) \csc (c+d x)^2dx}{a}-\int \frac {(e+f x) \csc (c+d x)}{\sin (c+d x) a+a}dx\)

\(\Big \downarrow \) 4672

\(\displaystyle \frac {\frac {f \int \cot (c+d x)dx}{d}-\frac {(e+f x) \cot (c+d x)}{d}}{a}-\int \frac {(e+f x) \csc (c+d x)}{\sin (c+d x) a+a}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {f \int -\tan \left (c+d x+\frac {\pi }{2}\right )dx}{d}-\frac {(e+f x) \cot (c+d x)}{d}}{a}-\int \frac {(e+f x) \csc (c+d x)}{\sin (c+d x) a+a}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {f \int \tan \left (\frac {1}{2} (2 c+\pi )+d x\right )dx}{d}-\frac {(e+f x) \cot (c+d x)}{d}}{a}-\int \frac {(e+f x) \csc (c+d x)}{\sin (c+d x) a+a}dx\)

\(\Big \downarrow \) 3956

\(\displaystyle \frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}-\int \frac {(e+f x) \csc (c+d x)}{\sin (c+d x) a+a}dx\)

\(\Big \downarrow \) 5046

\(\displaystyle \int \frac {e+f x}{\sin (c+d x) a+a}dx-\frac {\int (e+f x) \csc (c+d x)dx}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {e+f x}{\sin (c+d x) a+a}dx-\frac {\int (e+f x) \csc (c+d x)dx}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 3799

\(\displaystyle \frac {\int (e+f x) \csc ^2\left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )dx}{2 a}-\frac {\int (e+f x) \csc (c+d x)dx}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int (e+f x) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )^2dx}{2 a}-\frac {\int (e+f x) \csc (c+d x)dx}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 4671

\(\displaystyle -\frac {-\frac {f \int \log \left (1-e^{i (c+d x)}\right )dx}{d}+\frac {f \int \log \left (1+e^{i (c+d x)}\right )dx}{d}-\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{d}}{a}+\frac {\int (e+f x) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )^2dx}{2 a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 2715

\(\displaystyle -\frac {\frac {i f \int e^{-i (c+d x)} \log \left (1-e^{i (c+d x)}\right )de^{i (c+d x)}}{d^2}-\frac {i f \int e^{-i (c+d x)} \log \left (1+e^{i (c+d x)}\right )de^{i (c+d x)}}{d^2}-\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{d}}{a}+\frac {\int (e+f x) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )^2dx}{2 a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {\int (e+f x) \csc \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )^2dx}{2 a}-\frac {-\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{d}+\frac {i f \operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right )}{d^2}-\frac {i f \operatorname {PolyLog}\left (2,e^{i (c+d x)}\right )}{d^2}}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 4672

\(\displaystyle \frac {\frac {2 f \int \cot \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )dx}{d}-\frac {2 (e+f x) \cot \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )}{d}}{2 a}-\frac {-\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{d}+\frac {i f \operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right )}{d^2}-\frac {i f \operatorname {PolyLog}\left (2,e^{i (c+d x)}\right )}{d^2}}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {2 f \int -\tan \left (\frac {c}{2}+\frac {d x}{2}+\frac {3 \pi }{4}\right )dx}{d}-\frac {2 (e+f x) \cot \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )}{d}}{2 a}-\frac {-\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{d}+\frac {i f \operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right )}{d^2}-\frac {i f \operatorname {PolyLog}\left (2,e^{i (c+d x)}\right )}{d^2}}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {2 f \int \tan \left (\frac {1}{4} (2 c+3 \pi )+\frac {d x}{2}\right )dx}{d}-\frac {2 (e+f x) \cot \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )}{d}}{2 a}-\frac {-\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{d}+\frac {i f \operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right )}{d^2}-\frac {i f \operatorname {PolyLog}\left (2,e^{i (c+d x)}\right )}{d^2}}{a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

\(\Big \downarrow \) 3956

\(\displaystyle -\frac {-\frac {2 (e+f x) \text {arctanh}\left (e^{i (c+d x)}\right )}{d}+\frac {i f \operatorname {PolyLog}\left (2,-e^{i (c+d x)}\right )}{d^2}-\frac {i f \operatorname {PolyLog}\left (2,e^{i (c+d x)}\right )}{d^2}}{a}+\frac {\frac {4 f \log \left (-\cos \left (\frac {c}{2}+\frac {d x}{2}-\frac {\pi }{4}\right )\right )}{d^2}-\frac {2 (e+f x) \cot \left (\frac {c}{2}+\frac {d x}{2}+\frac {\pi }{4}\right )}{d}}{2 a}+\frac {\frac {f \log (-\sin (c+d x))}{d^2}-\frac {(e+f x) \cot (c+d x)}{d}}{a}\)

input
Int[((e + f*x)*Csc[c + d*x]^2)/(a + a*Sin[c + d*x]),x]
 
output
((-2*(e + f*x)*Cot[c/2 + Pi/4 + (d*x)/2])/d + (4*f*Log[-Cos[c/2 - Pi/4 + ( 
d*x)/2]])/d^2)/(2*a) + (-(((e + f*x)*Cot[c + d*x])/d) + (f*Log[-Sin[c + d* 
x]])/d^2)/a - ((-2*(e + f*x)*ArcTanh[E^(I*(c + d*x))])/d + (I*f*PolyLog[2, 
 -E^(I*(c + d*x))])/d^2 - (I*f*PolyLog[2, E^(I*(c + d*x))])/d^2)/a
 

3.3.5.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3799
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.) 
, x_Symbol] :> Simp[(2*a)^n   Int[(c + d*x)^m*Sin[(1/2)*(e + Pi*(a/(2*b))) 
+ f*(x/2)]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^ 
2, 0] && IntegerQ[n] && (GtQ[n, 0] || IGtQ[m, 0])
 

rule 3956
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d 
*x], x]]/d, x] /; FreeQ[{c, d}, x]
 

rule 4671
Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[- 
2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*x))]/f), x] + (-Simp[d*(m/f)   Int[(c + 
d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Simp[d*(m/f)   Int[(c + d*x 
)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IG 
tQ[m, 0]
 

rule 4672
Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp 
[(-(c + d*x)^m)*(Cot[e + f*x]/f), x] + Simp[d*(m/f)   Int[(c + d*x)^(m - 1) 
*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]
 

rule 5046
Int[(Csc[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_. 
)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/a   Int[(e + f*x)^m*Csc[c + 
 d*x]^n, x], x] - Simp[b/a   Int[(e + f*x)^m*(Csc[c + d*x]^(n - 1)/(a + b*S 
in[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ 
[n, 0]
 
3.3.5.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (149 ) = 298\).

Time = 0.43 (sec) , antiderivative size = 369, normalized size of antiderivative = 2.18

method result size
risch \(-\frac {2 \left (-2 f x +i {\mathrm e}^{i \left (d x +c \right )} f x -2 e +i {\mathrm e}^{i \left (d x +c \right )} e +f x \,{\mathrm e}^{2 i \left (d x +c \right )}+e \,{\mathrm e}^{2 i \left (d x +c \right )}\right )}{\left ({\mathrm e}^{2 i \left (d x +c \right )}-1\right ) \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) d a}+\frac {f \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right ) x}{d a}-\frac {f \ln \left (1-{\mathrm e}^{i \left (d x +c \right )}\right ) x}{d a}+\frac {f \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{a \,d^{2}}+\frac {f \ln \left (1+{\mathrm e}^{2 i \left (d x +c \right )}\right )}{a \,d^{2}}+\frac {f \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{a \,d^{2}}-\frac {2 i f \arctan \left ({\mathrm e}^{i \left (d x +c \right )}\right )}{a \,d^{2}}-\frac {e \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d a}+\frac {e \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d a}+\frac {c f \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d^{2} a}-\frac {f \ln \left (1-{\mathrm e}^{i \left (d x +c \right )}\right ) c}{d^{2} a}+\frac {i f \,\operatorname {Li}_{2}\left ({\mathrm e}^{i \left (d x +c \right )}\right )}{a \,d^{2}}-\frac {i f \,\operatorname {Li}_{2}\left (-{\mathrm e}^{i \left (d x +c \right )}\right )}{a \,d^{2}}-\frac {4 f \ln \left ({\mathrm e}^{i \left (d x +c \right )}\right )}{d^{2} a}\) \(369\)

input
int((f*x+e)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x,method=_RETURNVERBOSE)
 
output
-2*(-2*f*x+I*exp(I*(d*x+c))*f*x-2*e+I*exp(I*(d*x+c))*e+f*x*exp(2*I*(d*x+c) 
)+e*exp(2*I*(d*x+c)))/(exp(2*I*(d*x+c))-1)/(exp(I*(d*x+c))+I)/d/a+1/d/a*f* 
ln(exp(I*(d*x+c))+1)*x-1/d/a*f*ln(1-exp(I*(d*x+c)))*x+1/a/d^2*f*ln(exp(I*( 
d*x+c))-1)+1/a/d^2*f*ln(1+exp(2*I*(d*x+c)))+1/a/d^2*f*ln(exp(I*(d*x+c))+1) 
-2*I/a/d^2*f*arctan(exp(I*(d*x+c)))-1/d/a*e*ln(exp(I*(d*x+c))-1)+1/d/a*e*l 
n(exp(I*(d*x+c))+1)+1/d^2/a*c*f*ln(exp(I*(d*x+c))-1)-1/d^2/a*f*ln(1-exp(I* 
(d*x+c)))*c+I*f*polylog(2,exp(I*(d*x+c)))/a/d^2-I*f*polylog(2,-exp(I*(d*x+ 
c)))/a/d^2-4/d^2/a*f*ln(exp(I*(d*x+c)))
 
3.3.5.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 858 vs. \(2 (145) = 290\).

Time = 0.32 (sec) , antiderivative size = 858, normalized size of antiderivative = 5.08 \[ \int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Too large to display} \]

input
integrate((f*x+e)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="fricas")
 
output
-1/2*(2*d*f*x - 4*(d*f*x + d*e)*cos(d*x + c)^2 + 2*d*e - 2*(d*f*x + d*e)*c 
os(d*x + c) + (-I*f*cos(d*x + c)^2 + (I*f*cos(d*x + c) + I*f)*sin(d*x + c) 
 + I*f)*dilog(cos(d*x + c) + I*sin(d*x + c)) + (I*f*cos(d*x + c)^2 + (-I*f 
*cos(d*x + c) - I*f)*sin(d*x + c) - I*f)*dilog(cos(d*x + c) - I*sin(d*x + 
c)) + (-I*f*cos(d*x + c)^2 + (I*f*cos(d*x + c) + I*f)*sin(d*x + c) + I*f)* 
dilog(-cos(d*x + c) + I*sin(d*x + c)) + (I*f*cos(d*x + c)^2 + (-I*f*cos(d* 
x + c) - I*f)*sin(d*x + c) - I*f)*dilog(-cos(d*x + c) - I*sin(d*x + c)) + 
(d*f*x - (d*f*x + d*e + f)*cos(d*x + c)^2 + d*e + (d*f*x + d*e + (d*f*x + 
d*e + f)*cos(d*x + c) + f)*sin(d*x + c) + f)*log(cos(d*x + c) + I*sin(d*x 
+ c) + 1) + (d*f*x - (d*f*x + d*e + f)*cos(d*x + c)^2 + d*e + (d*f*x + d*e 
 + (d*f*x + d*e + f)*cos(d*x + c) + f)*sin(d*x + c) + f)*log(cos(d*x + c) 
- I*sin(d*x + c) + 1) + ((d*e - (c + 1)*f)*cos(d*x + c)^2 - d*e + (c + 1)* 
f - (d*e - (c + 1)*f + (d*e - (c + 1)*f)*cos(d*x + c))*sin(d*x + c))*log(- 
1/2*cos(d*x + c) + 1/2*I*sin(d*x + c) + 1/2) + ((d*e - (c + 1)*f)*cos(d*x 
+ c)^2 - d*e + (c + 1)*f - (d*e - (c + 1)*f + (d*e - (c + 1)*f)*cos(d*x + 
c))*sin(d*x + c))*log(-1/2*cos(d*x + c) - 1/2*I*sin(d*x + c) + 1/2) - (d*f 
*x - (d*f*x + c*f)*cos(d*x + c)^2 + c*f + (d*f*x + c*f + (d*f*x + c*f)*cos 
(d*x + c))*sin(d*x + c))*log(-cos(d*x + c) + I*sin(d*x + c) + 1) - (d*f*x 
- (d*f*x + c*f)*cos(d*x + c)^2 + c*f + (d*f*x + c*f + (d*f*x + c*f)*cos(d* 
x + c))*sin(d*x + c))*log(-cos(d*x + c) - I*sin(d*x + c) + 1) - 2*(f*co...
 
3.3.5.6 Sympy [F]

\[ \int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\frac {\int \frac {e \csc ^{2}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx + \int \frac {f x \csc ^{2}{\left (c + d x \right )}}{\sin {\left (c + d x \right )} + 1}\, dx}{a} \]

input
integrate((f*x+e)*csc(d*x+c)**2/(a+a*sin(d*x+c)),x)
 
output
(Integral(e*csc(c + d*x)**2/(sin(c + d*x) + 1), x) + Integral(f*x*csc(c + 
d*x)**2/(sin(c + d*x) + 1), x))/a
 
3.3.5.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate((f*x+e)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="maxima")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.3.5.8 Giac [F]

\[ \int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\int { \frac {{\left (f x + e\right )} \csc \left (d x + c\right )^{2}}{a \sin \left (d x + c\right ) + a} \,d x } \]

input
integrate((f*x+e)*csc(d*x+c)^2/(a+a*sin(d*x+c)),x, algorithm="giac")
 
output
integrate((f*x + e)*csc(d*x + c)^2/(a*sin(d*x + c) + a), x)
 
3.3.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(e+f x) \csc ^2(c+d x)}{a+a \sin (c+d x)} \, dx=\text {Hanged} \]

input
int((e + f*x)/(sin(c + d*x)^2*(a + a*sin(c + d*x))),x)
 
output
\text{Hanged}